759 research outputs found

    A hypercyclic finite rank perturbation of a unitary operator

    Full text link
    A unitary operator VV and a rank 22 operator RR acting on a Hilbert space \H are constructed such that V+RV+R is hypercyclic. This answers affirmatively a question of Salas whether a finite rank perturbation of a hyponormal operator can be supercyclic.Comment: published in Mathematische Annale

    Monotone graph limits and quasimonotone graphs

    Full text link
    The recent theory of graph limits gives a powerful framework for understanding the properties of suitable (convergent) sequences (Gn)(G_n) of graphs in terms of a limiting object which may be represented by a symmetric function WW on [0,1][0,1], i.e., a kernel or graphon. In this context it is natural to wish to relate specific properties of the sequence to specific properties of the kernel. Here we show that the kernel is monotone (i.e., increasing in both variables) if and only if the sequence satisfies a `quasi-monotonicity' property defined by a certain functional tending to zero. As a tool we prove an inequality relating the cut and L1L^1 norms of kernels of the form W1W2W_1-W_2 with W1W_1 and W2W_2 monotone that may be of interest in its own right; no such inequality holds for general kernels.Comment: 38 page

    The Highly Oscillatory Behavior of Automorphic Distributions for SL(2)

    Full text link
    Automorphic distributions for SL(2) arise as boundary values of modular forms and, in a more subtle manner, from Maass forms. In the case of modular forms of weight one or of Maass forms, the automorphic distributions have continuous first antiderivatives. We recall earlier results of one of us on the Holder continuity of these continuous functions and relate them to results of other authors; this involves a generalization of classical theorems on Fourier series by S. Bernstein and Hardy-Littlewood. We then show that the antiderivatives are non-differentiable at all irrational points, as well as all, or in certain cases, some rational points. We include graphs of several of these functions, which clearly display a high degree of oscillation. Our investigations are motivated in part by properties of "Riemann's nondifferentiable function", also known as "Weierstrass' function".Comment: 27 pages, 6 Figures; version 2 corrects misprints and updates reference

    Breathers on lattices with long range interaction

    Full text link
    We analyze the properties of breathers (time periodic spatially localized solutions) on chains in the presence of algebraically decaying interactions 1/rs1/r^s. We find that the spatial decay of a breather shows a crossover from exponential (short distances) to algebraic (large distances) decay. We calculate the crossover distance as a function of ss and the energy of the breather. Next we show that the results on energy thresholds obtained for short range interactions remain valid for s>3s>3 and that for s<3s < 3 (anomalous dispersion at the band edge) nonzero thresholds occur for cases where the short range interaction system would yield zero threshold values.Comment: 4 pages, 2 figures, PRB Rapid Comm. October 199

    Lebesgue regularity for differential difference equations with fractional damping

    Get PDF
    We provide necessary and sufficient conditions for the existence and unique-ness of solutions belonging to the vector-valued space of sequences �(Z, X) forequations that can be modeled in the formΔu(n)+Δu(n)=Au(n)+G(u)(n)+ (n), n ∈ Z,,>0,≥0,where X is a Banach space, ∈ �(Z, X), A is a closed linear operatorwith domain D(A) defined on X,andG is a nonlinear function. The oper-ator Δdenotes the fractional difference operator of order >0inthesense of Grünwald-Letnikov. Our class of models includes the discrete timeKlein-Gordon, telegraph, and Basset equations, among other differential differ-ence equations of interest. We prove a simple criterion that shows the existenceof solutions assuming that f is small and that G is a nonlinear term

    Formulation of the uncertainty relations in terms of the Renyi entropies

    Get PDF
    Quantum mechanical uncertainty relations for position and momentum are expressed in the form of inequalities involving the Renyi entropies. The proof of these inequalities requires the use of the exact expression for the (p,q)-norm of the Fourier transformation derived by Babenko and Beckner. Analogous uncertainty relations are derived for angle and angular momentum and also for a pair of complementary observables in N-level systems. All these uncertainty relations become more attractive when expressed in terms of the symmetrized Renyi entropies

    Some extremal functions in Fourier analysis, III

    Full text link
    We obtain the best approximation in L1(R)L^1(\R), by entire functions of exponential type, for a class of even functions that includes eλxe^{-\lambda|x|}, where λ>0\lambda >0, logx\log |x| and xα|x|^{\alpha}, where 1<α<1-1 < \alpha < 1. We also give periodic versions of these results where the approximating functions are trigonometric polynomials of bounded degree.Comment: 26 pages. Submitte

    Estimates in Beurling--Helson type theorems. Multidimensional case

    Full text link
    We consider the spaces Ap(Tm)A_p(\mathbb T^m) of functions ff on the mm -dimensional torus Tm\mathbb T^m such that the sequence of the Fourier coefficients f^={f^(k), kZm}\hat{f}=\{\hat{f}(k), ~k \in \mathbb Z^m\} belongs to lp(Zm), 1p<2l^p(\mathbb Z^m), ~1\leq p<2. The norm on Ap(Tm)A_p(\mathbb T^m) is defined by fAp(Tm)=f^lp(Zm)\|f\|_{A_p(\mathbb T^m)}=\|\hat{f}\|_{l^p(\mathbb Z^m)}. We study the rate of growth of the norms eiλφAp(Tm)\|e^{i\lambda\varphi}\|_{A_p(\mathbb T^m)} as λ, λR,|\lambda|\rightarrow \infty, ~\lambda\in\mathbb R, for C1C^1 -smooth real functions φ\varphi on Tm\mathbb T^m (the one-dimensional case was investigated by the author earlier). The lower estimates that we obtain have direct analogues for the spaces Ap(Rm)A_p(\mathbb R^m)

    Entropic uncertainty relations for extremal unravelings of super-operators

    Full text link
    A way to pose the entropic uncertainty principle for trace-preserving super-operators is presented. It is based on the notion of extremal unraveling of a super-operator. For given input state, different effects of each unraveling result in some probability distribution at the output. As it is shown, all Tsallis' entropies of positive order as well as some of Renyi's entropies of this distribution are minimized by the same unraveling of a super-operator. Entropic relations between a state ensemble and the generated density matrix are revisited in terms of both the adopted measures. Using Riesz's theorem, we obtain two uncertainty relations for any pair of generalized resolutions of the identity in terms of the Renyi and Tsallis entropies. The inequality with Renyi's entropies is an improvement of the previous one, whereas the inequality with Tsallis' entropies is a new relation of a general form. The latter formulation is explicitly shown for a pair of complementary observables in a dd-level system and for the angle and the angular momentum. The derived general relations are immediately applied to extremal unravelings of two super-operators.Comment: 8 pages, one figure. More explanations are given for Eq. (2.19) and Example III.5. One reference is adde
    corecore